
Acta Physica Polonica B Proceedings Supplement 15, 4-A8 (2022)

MONTE CARLO SIMULATION PLATFORM
AND SOFTWARE STACK IN DOSE-3D PROJECT∗

Jakub Hajdugaa,b,†, Bartłomiej Rachwałc, Tomasz Szumlaka

Marcin Filipeka, Tomasz Fiutowskia, Wioleta Górskaa,b

Paweł Jurgielewicza, Damian Kabatb, Kamila Kalecińskaa

Łukasz Kapłonb,d,e, Maciej Kopeća, Stefan Kopernya

Dagmara Kuligb, Bartosz Mindura, Jakub Morońa

Gabriel Moskalb,f , Antoni Rucińskib,d, Piotr Wiąceka

aAGH University of Science and Technology
Faculty of Physics and Applied Computer Science

Mickiewicza 30, 30-059 Kraków, Poland
bDepartment of Medical Physics

Maria Sklodowska-Curie National Research
Institute of Oncology Kraków Branch
Garncarska 11, 31-115 Kraków, Poland

cCracow University of Technology
Faculty of Materials Science and Physics
Warszawska 24, 31-155 Kraków, Poland

dDepartment of Experimental Particle Physics and Applications
Faculty of Physics, Astronomy and Applied Computer Science

Jagiellonian University in Kraków
Łojasiewicza 11, 30-348 Kraków, Poland

eTotal-Body Jagiellonian-PET Laboratory, Jagiellonian University
Łojasiewicza 11, 30-348 Kraków, Poland
fDepartment of Chemical Technology

Faculty of Chemistry of the Jagiellonian University
Gronostajowa 2, 30-387 Kraków, Poland

gInstitute of Nuclear Physics Polish Academy of Sciences
Radzikowskiego 152, 31-342 Kraków, Poland

Received 20 September 2022, accepted 10 November 2022,
published online 29 November 2022

We present building blocks that make up the software stack being de-
veloped as part of the Dose-3D project that aims at constructing a next-
generation active medical phantom for spatial therapeutic dose distribu-
tion reconstruction. The architecture of the custom G4RT application is

∗ Presented at the 4th Jagiellonian Symposium on Advances in Particle Physics and
Medicine, Cracow, Poland, 10–15 July, 2022.

† Corresponding author: jhajduga@agh.edu.pl

(4-A8.1)

https://www.actaphys.uj.edu.pl/findarticle?series=sup&vol=15&aid=4-A8


4-A8.2 J. Hajduga et al.

discussed, and Python-based packages for high-level data processing and
analysis are introduced.

DOI:10.5506/APhysPolBSupp.15.4-A8

1. Introduction

1.1. Project overview

The Dose-3D [1] project aims at creating the next generation of medical
phantom. More specifically, it will be a three-dimensional modular [2] and
configurable active detector featuring high granularity. The active material
of the said detector is a plastic scintillator. A voxelised phantom will be
capable of directly measuring the spatial distribution of the deposited ther-
apeutic dose. The project will use plastic scintillators produced by casting,
and polymerization in the bulk [3, 4] and 3D printed by digital light process-
ing [5]. The scintillators will be read out by the photomultiplier via polymer
optical fibres, and the light-tight head housing with scintillators is also 3D
printed using fused deposition modelling. However, in addition to preparing
the device itself, it is necessary to develop the high-end software for dose
simulation, configuration, and control of the entire device and, finally, the
data processing and analysis.

1.2. Software-stack

As a part of the comprehensive software stack being developed in the
project, a number of data analyses and processing packages are being de-
veloped. The core elements of this project are tools for analyzing the
raw data, machine learning, Python/C++ modules, along with the medi-
cal physics-specific software for DICOM (Digital Imaging and Communica-
tions in Medicine) [6] standard. By using programmes developed for the
project, we were able to avoid dependence on payware, heavy software or
software with functions not required by the project. In addition, when using
third-party software, it will still be necessary to develop our own software
for handling data of various types from different sources; therefore, once we
have standardised output data, it seems much more convenient to handle it
in a manner which is familiar and fully under our supervision. As Monte
Carlo (MC) simulations are considered the gold standard for high-accuracy
data generation, the development of a custom MC simulation platform is
essential for the project. By using the in-house simulation platform called
G4RT implemented on top of the Geant4 [7] framework, we will produce data
that mimics real apparatus. It was recognised that the development of our
own software to meet the needs of the project was essential, as the solutions
available on the market (such as GATE, Topaz or more commercial solutions
such as PRIMO) do not allow for full proof of world creation due to various



Monte Carlo Simulation Platform and Software Stack in Dose-3D . . . 4-A8.3

limitations (GATE and Topaz use parameterised interfaces based on macros,
not allowing for full freedom of world creation and code control) or for the
openness of data flow (in PRIMO — gantry geometrics or some of their solu-
tions are proprietary). The data will be used to optimize the parameters of
the Dose-3D cell and ensure proper calibration of the prototyped phantom.
As a team, we have plans to publish the application along with the source
code for the general public before the finishing of the project. Until this
software is ready to be published, we will continue to develop it and create
more refined versions.

2. High-level software stack

During the designing and development of the software, it was decided to
implement a high-level interface developed as independent packages, which
has made it possible to separate various key functionalities from each other
and allows some functionality to be used independently of the overall envi-
ronment. In order to ensure the uniformity of the data format on the input
and output of the individual parts of the workflow, as well as to enable
data exchange between Python and C++ environments, it was decided to
use Dataframes. The use of Dataframes implemented in the pandas package
makes it possible to ensure that we are using the correct type of individual
data sets for the package and will also allow us to implement unit tests in
the future. Currently, data integrity and homogeneity checking is carried
out by project staff.

2.1. Global software dependencies and data flow in the environment

When designing the execution environment for the G4RT simulator, it
was crucial to plan an appropriate dependency structure and data flow.
This was to ensure both well-structured and documented functionality and
for proper management of the data formats and information flow. Consis-
tently, the parts of our environment can be used independently of each other
as standalone packages — this brings benefits such as the ability to perform
data analysis in a Jupyter environment [8] or to perform work on data in
DICOM format without running the simulation itself. This gives the ability
to perform more specific tasks through smaller and lighter sub-applications
of the environment. The path taken during the development of the Dose-3D
software stack was set to meet the challenge of creating tools and applica-
tions that are easy to maintain, allows data preservation and grant people
with different levels of programming experience a chance to work. The struc-
ture discussed here is shown in Fig. 1. One of the challenges we met along
the way of creating a workflow and unifying the data format was to connect
environments working in both Python and C++ with each other. Follow-
ing, it was necessary to make sure that the data being compared — in the



4-A8.4 J. Hajduga et al.

case of analysis — shared the same structure (units, order of magnitude,
scale) as the others. To achieve this, we studied in detail the data formats
proposed by PRIMO, NIO (National Research Institute of Oncology) for ex-
perimental measurements (carried out there on the water phantom of square
fields), and then decided on a method for unifying their format — the use
of the previously mentioned pandas data frames here helped achieve data
homogeneity at this level. When working on data in both DICOM and IAEA
phsp (International Atomic Energy Agency — phase-space) [9] formats, it
was necessary to understand the data standard and then implement a set of
tools to parse the collected data. Since both formats can be used in G4RT,
it used elements of the pybind11 library, which allowed Python libraries to be
used inside the G4RT code, as well as allowing the Python tools themselves
to call out directly code developed in C++ — allowing data to flow directly
between the two without the need for intermediate formats.

Fig. 1. Dependencies between different parts of the Dose-3D software environment.

3. G4RT application

3.1. Data flow inside application

The G4RT application uses a novel and modern approach to building
applications in C++. However, this necessitated a change in approach to
the typical application written on Geant4. One of the most noticeable differ-
ences is the abandonment of the so-called messenger classes for user interface
development. In the case of the classic use of messenger classes, they are
the only method for communication between the application and the user
(configure applications and provide some interactivity). As the developers



Monte Carlo Simulation Platform and Software Stack in Dose-3D . . . 4-A8.5

of Geant4 themselves note: “Writing a messenger is not complicated, but
it is very tedious and a hurdle to maintain” [10]. Currently, in the Geant4
repository, there are over 500 different messengers. The entire handling of
the application API is put over to a new type of class, so-called services. The
whole idea of services allows you to create fewer elements that can commu-
nicate with the user by taking configuration and storing it as class elements,
where also, all of this process happens at the application development level.
The services can be divided into two types — those responsible for pre-
processing as well as the main service — the global configuration service.
They manage of user communication and management of all configurable el-
ements of the application, such as materials, geometry parameterization or
run-time. To better illustrate the dependencies in the G4RT, an information
flow model for a single simulation run is presented in Fig. 2. In addition,
Fig. 3 presents the factory-like mechanism handled with a number of services
for determining the initial conditions of a simulation based on a plan from
the Treatment Planning System (TPS).

Fig. 2. The information flow model for a single simulation run within G4RT appli-
cation.



4-A8.6 J. Hajduga et al.

3.2. Particle beam and patient geometry

Another important element that has been proposed is the geometry
building system — the geometry service. Being implemented in G4RT, the
architecture of this service allows easy world scaling for gantry elements as
well as for patient models. The configuration of the entire system is divided
into a beam modelling stage and a phantom generation stage, as shown in
Fig. 3. As can be seen in the graph, the G4RT application allows for differ-
ent ways to generate the particle beam as well as the patient model. This
will allow for the reproduction of Treatment Plans as well as defines the
simulation platform as a reference application for the Dose-3D experiment.

Fig. 3. Chart showing the different methods of configuring beam and patient ge-
ometry.

4. Python-based utilities

4.1. PyDose3D package

A set of key high-level data analysis tools has been gathered together in
the Python package called PyDose3D. This allows for standardizing the tools
and plotting styles for the data analysis across the whole collaboration. As
an example of the module, such as a tool that allows for a simple and com-
prehensive presentation of dose data, their analysis as well as comparison
with each other have been collected (Figs. 4 and 5). In order to provide an
example comparison of possible data sets, it was decided to present a com-
parison of the dose distribution from the squared field in the water phantom
in PDD (percentage depth dose curve) profile.

4.2. In-house interfaces for external libraries

A set of other Python-based tools developed during the project includes
those for the DICOM file format — DicomGizmos package — which provides
the ability to handle the input data for MC simulation (DICOM-RT from



Monte Carlo Simulation Platform and Software Stack in Dose-3D . . . 4-A8.7

Fig. 4. PDDs obtained from Geant4-RT simulation and measurement fields with
dose differences in the function of depth.

Fig. 5. PDDs obtained from Geant4-RT simulation and measurement fields with
gamma index values distribution and in the function of depth.

TPS), as well as enabling the creation of para-CT images based on GDML
(Geometry Description Markup Language) geometry format. The last func-
tionality allows geometry created within typical Geant4 applications to be
exported and used in medical software. In addition, CT generated in this way
is free of noise and ensures the preservation of sharp edges, which can prove
useful within simple simulations or studies performed in TPS systems. The
PyIAEA package consists of a refactored of the original IAEA library as well
as the Geant4 event-oriented history of particles. This phase-space reader
has been tightly coupled with Python, which was accomplished with minimal



4-A8.8 J. Hajduga et al.

dependencies on external libraries and tools. In Fig. 6, the end-user interface
is shown that can be utilized for IAEA phase-space exploration (possible to
be performed with Pandas Dataframe format).

Fig. 6. A code snippet demonstrating the simplicity and intuitiveness of a high-level
Python interface to support IAEA libraries.

5. Summary

The groundwork for the architecture and development of the software
stack was described. The in-house MC simulation platform is being devel-
oped as well as Python-based utilities were described in detail.

The POIR.04.04.00-00-15E5/18 project is carried out within the “TEAM-
NET” programme of the Foundation for Polish Science, co-financed by the
European Union under the European Regional Development Fund.

REFERENCES

[1] Dose-3D Collaboration «TN-Dose-3D Project website» https://dose3d.
fis.agh.edu.pl/en/projekt-dose-3d-z-programu-team-net-fnp-eng/.

[2] P. Jurgielewicz et al., Nucl. Instrum. Methods Phys. Res. A 1045, 167607
(2023).

[3] Ł. Kapłon, G. Moskal, Bio. Algorithm Med. Syst. 17, 191 (2021).
[4] Ł. Kapłon et al., Radiat. Meas. 158, 106864 (2022).
[5] D. Kulig et al., Comparison of cell casted and 3D-printed plastic scintillators

for dosimetry applications, submitted to Radiat. Prot. Dosim.
[6] R.N. Graham, R.W. Perriss, A.F. Scarsbrook, Clin. Radiol. 60, 1133 (2005).
[7] S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. A 503, 250 (2003).
[8] M. Beg et al., Comput. Sci. Eng. 23, 36 (2021).
[9] M.A. Cortés-Giraldo, J.M. Quesada, M.I. Gallardo, R. Capote, Int. J.

Radiat. Biol. 88, 200 (2012).
[10] N. Mori, Nucl. Instrum. Methods Phys. Res. A 1002, 165298 (2021).

https://dose3d.fis.agh.edu.pl/en/projekt-dose-3d-z-programu-team-net-fnp-eng/
https://dose3d.fis.agh.edu.pl/en/projekt-dose-3d-z-programu-team-net-fnp-eng/
http://dx.doi.org/10.1016/j.nima.2022.167607
http://dx.doi.org/10.1016/j.nima.2022.167607
http://dx.doi.org/10.1515/bams-2021-0088
http://dx.doi.org/10.1016/j.radmeas.2022.106864
http://dx.doi.org/10.1016/j.crad.2005.07.003
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1109/MCSE.2021.3052101
http://dx.doi.org/10.3109/09553002.2011.627977
http://dx.doi.org/10.3109/09553002.2011.627977
http://dx.doi.org/10.1016/j.nima.2021.165298

	1 Introduction
	1.1 Project overview
	1.2 Software-stack

	2 High-level software stack
	2.1 Global software dependencies and data flow in the environment

	3 G4RT application
	3.1 Data flow inside application
	3.2 Particle beam and patient geometry

	4 Python-based utilities
	4.1 PyDose3D package
	4.2 In-house interfaces for external libraries

	5 Summary

